Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38661542

RESUMO

In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 µm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.

2.
J Phys Chem Lett ; : 4602-4611, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640083

RESUMO

An intriguing phenomenon in molecular collisions is the occurrence of scattering resonances, which originate from bound and quasi-bound states supported by the interaction potential at low collision energies. The resonance effects in the scattering behavior are extraordinarily sensitive to the interaction potential, and their observation provides one of the most stringent tests for theoretical models. We present high-resolution measurements of state-resolved angular scattering distributions for inelastic collisions between Zeeman-decelerated C(3P1) atoms and para-H2 molecules at collision energies ranging from 77 cm-1 down to 0.5 cm-1. Rapid variations in the angular distributions were observed, which can be attributed to the consecutive reduction of contributing partial waves and effects of scattering resonances. The measurements showed excellent agreement with distributions predicted by ab initio quantum scattering calculations. However, discrepancies were found at specific collision energies, which most likely originate from an incorrectly predicted quasi-bound state. These observations provide exciting prospects for further high-precision and low-energy investigations of scattering processes that involve paramagnetic species.

3.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
4.
Front Bioeng Biotechnol ; 12: 1360506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576447

RESUMO

The clinical application of the recombinant human granulocyte colony-stimulating factor (rhG-CSF) is restricted by its short serum half-life. Herein, site-selective modification of the N-terminus of rhG-CSF with PAL-PEG3-Ph-CHO was used to develop a long-acting rhG-CSF. The optimized conditions for rhG-CSF modification with PAL-PEG3-Ph-CHO were: reaction solvent system of 3% (w/v) Tween 20 and 30 mM NaCNBH3 in acetate buffer (20 mmol/L, pH 5.0), molar ratio of PAL-PEG3-Ph-CHO to rhG-CSF of 6:1, temperature of 20°C, and reaction time of 12 h, consequently, achieving a PAL-PEG3-Ph-rhG-CSF product yield of 70.8%. The reaction mixture was purified via preparative liquid chromatography, yielding the single-modified product PAL-PEG3-Ph-rhG-CSF with a HPLC purity exceeding 95%. The molecular weight of PAL-PEG3-Ph-rhG-CSF was 19297 Da by MALDI-TOF-MS, which was consistent with the theoretical value. The circular dichroism analysis revealed no significant change in its secondary structure compared to unmodified rhG-CSF. The PAL-PEG3-Ph-rhG-CSF retained 82.0% of the in vitro biological activity of unmodified rhG-CSF. The pharmacokinetic analyses showed that the serum half-life of PAL-PEG3-Ph-rhG-CSF was 7.404 ± 0.777 h in mice, 4.08 times longer than unmodified rhG-CSF. Additionally, a single subcutaneous dose of PAL-PEG3-Ph-rhG-CSF presented comparable in vivo efficacy to multiple doses of rhG-CSF. This study demonstrated an efficacious strategy for developing long-acting rhG-CSF drug candidates.

5.
Sci Adv ; 10(17): eadk9250, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657060

RESUMO

In July to August 2022, Pakistan suffered historic flooding while record-breaking heatwaves swept southern China, causing severe socioeconomic impacts. Similar extreme events have frequently coincided between two regions during the past 44 years, but the underlying mechanisms remain unclear. Using observations and a suite of model experiments, here, we show that the upper-tropospheric divergent wind induced by convective heating over Pakistan excites a barotropic anomalous anticyclone over eastern China, which further leads to persistent heatwaves. Atmospheric model ensemble simulation indicates that this dynamic pathway linking Pakistan flooding and East Asian heatwaves is intrinsic to the climate system, largely independent of global sea surface temperature forcing. This dynamic connection is most active during July to August when convective variability is large over Pakistan and the associated divergent flow excites barotropic Rossby waves that propagate eastward along the upper troposphere westerly waveguide. This robust waveguide and the time delay offer hopes for improved subseasonal prediction of extreme events in East Asia.

6.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38617296

RESUMO

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαßγ structures, these snapshots primarily capture the fully activated end-state complex. Consequently, a comprehensive understanding of the conformational transitions during GPCR activation and the roles of intermediate GPCR-G protein complexes in signaling remain elusive. Guided by a conformational landscape profiled by 19 F quantitative NMR ( 19 F-qNMR) and Molecular Dynamics (MD) simulations, we resolved the structure of an unliganded GPCR-G protein intermediate complex by blocking its transition to the fully activated end-state complex. More importantly, we presented direct evidence that the intermediate GPCR-Gαsßγ complex initiates a rate-limited nucleotide exchange without progressing to the fully activated end-state complex, thereby bridging a significant gap in our understanding the complexity of GPCR signaling. Understanding the roles of individual conformational states and their complexes in signaling efficacy and bias will help us to design drugs that discriminately target a disease-related conformation.

7.
Heliyon ; 10(7): e29168, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617966

RESUMO

Background: Lipid metabolism disorders have become a major global public health issue. Due to the complexity of these diseases, additional research and drugs are needed. Oroxin A, the major component of Oroxylum indicum (L.) Kurz (Bignoniaceae), can improve the lipid profiles of diabetic and insulin-resistant (IR) rats. Because insulin resistance is strongly correlated with lipid metabolism, improving insulin resistance may also constitute an effective strategy for improving lipid metabolism. Thus, additional research on the efficacy and mechanism of oroxin An under non-IR conditions is needed. Methods: In this study, we established lipid metabolism disorder model rats by high-fat diet feeding and fatty HepG2 cell lines by treatment with oleic acid and evaluated the therapeutic effect and mechanism of oroxin A in vitro and in vivo through biochemical indicator analysis, pathological staining, immunoblotting, and immunofluorescence staining. Results: Oroxin A improved disordered lipid metabolism under non-IR conditions, improved the plasma and hepatic lipid profiles, and enhanced the lipid-lowering action of atorvastatin. Additionally, oroxin A reduced the total triglyceride (TG) levels by inhibiting sterol regulatory element-binding protein 1 (SREBP1) expression and reducing the expression of acetyl coenzyme A carboxylase (ACC) and fatty acid synthase (FASN) in vivo and in vitro. Oroxin A also reduced the total cholesterol (TC) levels by inhibiting SREBP2 expression and reducing HMGCR expression in vivo and in vitro. In addition, oroxin A bound to low-density lipoprotein receptor (LDLR) and increased AMPK phosphorylation. Conclusions: Our results suggested that oroxin A may modulate the nuclear transcriptional activity of SREBPs by binding to LDLR proteins and increasing AMPK phosphorylation. Oroxin A may thus reduce lipid synthesis and could be used for the treatment and prevention of lipid metabolism disorders.

8.
Sci Adv ; 10(15): eadl0372, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608014

RESUMO

Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.


Assuntos
Vesículas Extracelulares , Metformina , Humanos , Animais , Camundongos , Idoso , Metabolismo Energético , Envelhecimento , Senescência Celular , Trifosfato de Adenosina
9.
ACS Med Chem Lett ; 15(4): 555-564, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628804

RESUMO

DNA-encoded library (DEL) technology is gaining attention for its rapid construction and deconvolution capabilities. Our study explored a novel strategy using rational DELs tailored for the SARS-CoV-2 papain-like protease, which revealed new fragments. Structural changes post-DEL screening mimic traditional medicinal chemistry lead optimization. We unveiled unique aromatic structures offering an alternative optimization path. Notably, we identified superior binding fragments targeting the BL2 groove. Derivative 16 emerged as the most promising by exhibiting IC50 values of 0.25 µM. Derivative 6, which features an aromatic fragment capped with a naphthalene moiety, showed IC50 values of 2.91 µM. Molecular modeling revealed hydrogen bond interactions with Lys157 residue and potential covalent interactions with nearby amino acid residues. This research underscored DEL's potential for fragment-based drug discovery against SARS-CoV-2 protease.

10.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621360

RESUMO

Anodic dendrite formation is a critical issue in rechargeable batteries and often leads to poor cycling stability and quick capacity loss. Prevailing strategies for dendrite suppression aim at slowing down the growth rate kinetically but still leaving possibilities for dendrite evolution over time. Herein, we report a complete dendrite elimination strategy using a mesoporous ferroelectric polymer membrane as the battery separator. The dendrite suppression is realized by spontaneously reversing the surface energetics for metal ion reduction at the protrusion front, where a positive piezoelectric polarization is generated and superimposed as the protrusion compresses the separator. This effect is demonstrated first in a Zn electroplating process, and further in Zn-Zn symmetric cells and Zn-NaV3O8·1.5H2O full cells, where the dendritic Zn anode surfaces are completely turned into featureless flat surfaces. Consequently, a substantially longer charging/discharging cycle is achieved. This study provides a promising pathway toward high-performance dendrite-free rechargeable batteries.

11.
Huan Jing Ke Xue ; 45(3): 1525-1538, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471867

RESUMO

Shallow groundwater is the main source of water for living and industrial and agricultural production in Anqing City, which is an important basic guarantee to maintain the sustainable development of the social economy and regional ecological environment. In order to further study the water chemical characteristics and controlling factors of shallow groundwater in Anqing City, 196 groups of shallow groundwater samples were collected. A Piper diagram graph, Gibbs chart, ion ratio, and mathematical statistics were comprehensively used to study the water chemical characteristics and controlling factors of groundwater in Anqing City, and the contribution of different sources to the water chemical components of groundwater was quantitatively evaluated. The results showed that the shallow groundwater in Anqing City was weakly alkaline, with pH values ranging from 5.84 to 8.38, with an average value of 7.21. The TDS ranged from 47 to 1 620 mg·L-1, with an average of 324.21 mg·L-1. HCO3- and Ca2+ were the main anions, and the water chemical type was HCO3-Ca type. The chemical components of groundwater were affected by rock weathering leaching, cation alternating adsorption, mineral dissolution and precipitation, and human activities. Ca2+, Mg2+, and HCO3- were mainly derived from the weathering dissolution of carbonate and silicate; Na+, Cl-, and SO42- were affected by industrial activities and domestic sewage discharge; and K+ and NO3- were affected by agricultural activities. The APCS-MLR receptor model analysis further revealed that the chemical components of groundwater were mainly geological factors, industrial factors, agricultural factors, and unknown sources, and their contribution rates were 45.35%, 14.19%, 25.38%, and 15.08%, respectively. Geological factors were important sources of hydrochemical components of shallow groundwater, and human activities aggravated the evolution of groundwater hydrochemistry.

12.
Angiogenesis ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483712

RESUMO

Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.

13.
Mol Cancer ; 23(1): 46, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459592

RESUMO

Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Vacinas de DNA , Animais , Camundongos , Vacinas Baseadas em Ácido Nucleico , Vacinas de DNA/genética , Vacinas contra Papillomavirus/genética , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Camundongos Endogâmicos C57BL , Microambiente Tumoral
14.
Mikrochim Acta ; 191(4): 181, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446252

RESUMO

Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand-silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.


Assuntos
Mitocôndrias , Nanopartículas , Corantes , Silanos , Dióxido de Silício
15.
Transpl Immunol ; 84: 102042, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38527707

RESUMO

BACKGROUND: Exogenous neural cell transplantation may be therapeutic for stroke, cerebral ischemic injury. Among other mechanisms, increasing findings indicated circular RNAs (circRNAs) regulate the pathogenesis progression of cerebral ischemia. Mmu_circ_0015034 (circEfnb2) was upregulated in focal cortical infarction established by middle cerebral artery occlusion (MCAO) in mice. Our study was designed to probe the molecular mechanism of circEfnb2 in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal damage in cerebral ischemia. METHODS: We established an in vitro OGD/R cell model. CircEfnb2 and microRNA-202-5p (miR-202-5p) levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were assessed using specific kits. Tumor necrosis factor-α (TNF-α) and Interleukin-1ß (IL-1ß) levels were examined using an Enzyme-linked immunosorbent assay (ELISA). Flow cytometry analysis evaluated cell apoptosis. Protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), cleaved caspase 3, and Tumor necrosis factor receptor-associated factor 3 (TRAF3) were determined using Western blot assay. RESULTS: Overall, circEfnb2 was highly expressed whereas miR-202-5p was decreased in OGD/R-treated mouse hippocampal neuronal HT22 cells compared to normal controls (both p > 0.05). From an in vitro functional perspective, circEfnb2 knockdown attenuated an OGD/R-triggered neuronal injury compared to controls (p > 0.05). Mechanically, circEfnb2 acted as a sponge of miR-202-5p; downregulation of miR-202-5p annulled the inhibitory roles of circEfnb2 silencing in an OGD/R-caused neuronal injury model. Our analysis showed that miR-202-5p directly targeted TRAF3 as enhanced TRAF3 abolished the effects of miR-202-5p in the OGD/R-induced neuronal injury. In vivo, lentivirus with a short hairpin (sh)-circEfnb2 inhibited cerebral injury, when injected into cerebral cortex in MCAO mice (p > 0.05). CONCLUSION: Our results suggest that circEfnb2 deficiency may decrease OGD/R-induced HT22 cell damage by modulating the miR-202-5p/TRAF3 axis. This explanation may provide a new direction for cerebral infarction potential therapeutic targets.

16.
Chem Sci ; 15(10): 3610-3615, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455024

RESUMO

We report herein the synthesis of highly enantiopure inherently chiral N3,O-calix[2]arene[2]triazines from enantioselective macrocyclization enabled by chiral phosphoric acid-catalyzed intramolecular nucleophilic aromatic substitution reaction. In contrast to documented examples, the inherent chirality of the acquired compounds arises from one heteroatom difference in the linking positions of heteracalix[4](het)arenes.

17.
Adv Sci (Weinh) ; : e2400018, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502873

RESUMO

Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.

18.
Cell Death Dis ; 15(3): 215, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485986

RESUMO

The invasion-metastasis cascade in head and neck squamous cell carcinoma (HNSCC) is predominantly caused by the interaction between tumor cells and tumor microenvironment, including hypoxia as well as stromal cells. However, the mechanism of hypoxia-activated tumor-stroma crosstalk in HNSCC metastasis remains to be deciphered. Here, we demonstrated that HIF1α was upregulated in HNSCC specimens compared with adjacent normal tissues, whose overexpression was associated with lymph node metastasis and predicted unfavorable prognosis. HIF1α expression correlated positively with the levels of miR-5100 as well as α-SMA, the marker of CAFs. Hypoxia/HIF1α regulated transcriptionally miR-5100 to promote the degradation of its target gene QKI, which acts as a tumor suppressor in HNSCC. Hypoxic HNSCC-derived exosomal miR-5100 promoted the activation of CAFs by orchestrating QKI/AKT/STAT3 axis, which further facilitated HNSCC metastasis. Additionally, miR-5100 derived from plasma exosomes indicated HNSCC malignant progression. In conclusion, our findings illuminate a novel HIF1α/miR-5100/QKI pathway in HNSCC metastasis, and suggest that miR-5100 might be a potential biomarker and therapeutic target for HNSCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Exossomos , Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/patologia , MicroRNAs/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Microambiente Tumoral/genética
19.
Adv Mater ; : e2313513, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461147

RESUMO

The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx @C). This effect facilitates the formation of high-density O (VO ) and Ni (VNi ) vacancy sites with different charge polarities, specifically FLP-VO -C basic sites and FLP-VNi -C acidic sites. The synergistic interaction between FLP-VO -C and FLP-VNi -C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx @C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx @C/g-C3 N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1 , surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.

20.
Pharmacol Res ; 202: 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438090

RESUMO

Circular RNAs (circRNAs) represent a novel class of non-coding RNAs that play significant roles in tumorigenesis and tumor progression. High-throughput sequencing of gastric cancer (GC) tissues has identified circRNA BIRC6 (circBIRC6) as a potential circRNA derived from the BIRC6 gene, exhibiting significant upregulation in GC tissues. The expression of circBIRC6 is notably elevated in GC patients. Functionally, it acts as a molecular sponge for miR-488, consequently upregulating GRIN2D expression and promoting GC proliferation, migration, and invasion. Moreover, overexpression of circBIRC6 leads to increased GRIN2D expression, which in turn enhances caveolin-1 (CAV1) expression, resulting in autophagy deficiency due to miR-488 sequestration. This cascade of events significantly influences tumorigenesis in vivo. Our findings collectively illustrate that the CircBIRC6-miR-488-GRIN2D axis fosters CAV1 expression in GC cells, thereby reducing autophagy levels. Both circBIRC6 and GRIN2D emerge as potential targets for treatment and independent prognostic factors for GC patients.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Autofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...